

FACADE

HALFEN-DEHA. WORLDWIDE LEADER IN CURTAIN WALL CONNECTIONS

PAGE

Introduction and short project list	2
Installation examples	3
Typical curtain wall connections	4–5
Selecting the right channel	6–8
Installation	9
Halfen channels and T-bolts for extreme load situations	10–11
Halfen channels and T-bolts for standard applications	12–13
Halfen channels and T-bolts for use in thin concrete	
elements	14–15
Halfen high load channel HCW 52/34	16–17
Disadvantages of welding and advantages of	
using Halfen channels	18–19

A Worldwide Reputation for Excellence

CONTENTS

In 1929 HALFEN started to produce adjustable connection systems in Germany which soon became known as "Halfen channels". Now used worldwide, the amount of Halfen channels installed in the past 10 years alone would almost span the globe. The product allows adjustable connections to precast concrete as well as for concrete poured at the constructions site. Halfen channels are ideal, for framing applications, and for facade fixing solutions. A highly competent Research and Development team makes sure, that HALFEN-DEHA maintains its reputation as technology leader by offering the most innovative and the user-friendly fixing and anchoring systems.

The Halfen System

SHORT PROJECT LIST

Jin-Mao, Shanghai IFC One, Henderson Centre, Hong Kong Beijing

Central Plaza, Hong Kong

Oriental Plaza, Beijing

COFCO Plaza, Beijing

Tianan Plaza, Tianan Hong Kong Chek Lap Kok Airport

New World Centre, Beijing

INSTALLATION EXAMPLES

Typical facade connection to the edge of a floor slab.

Facade connections using toothed HZA channels to provide adjustment in the direction of the wind load. One or two channels can be used per bracket.

Typical connection to the edge of a post tensioned floor slab.

Sunscreen connections using channels to support vertical & horizontal loads.

Typical window connection to precast panel.

TYPICAL CURTAIN WALL CONNECTIONS

Mulion Halfen Cast-in Channel & T-Head Bolt

Typical anchorage detail to top of slab

High wind load connection using Halfen high load channel HCW S2/34

Typical anchorage detail to edge of thin slab

TYPICAL CURTAIN WALL CONNECTIONS

Typical anchorage details for individual or strip windows

Typical anchorage detail to top of floor slabs. Option of pocket at channel locations as illustrated.

Typical anchorage detail to metal deck floor slab

HALFEN CAST-IN CHANNELS HTA, HZA, HCW AND HGB-E

SELECTING THE RIGHT HALFEN CHANNEL FOR EACH LOAD CONDITION

Notes:

① HZA 29/20 replaces and offers improved performance to HTA 40/22.
 ② HZA 38/23 replaces and offers improved performance to HTA 50/30.

CALCULATION EXAMPLE - HOW TO SELECT THE RIGHT CHANNEL

EXAMPLE 1

 $F_{W,d} =$

18.0kN

30

 $F_{D,d} =$

8.1kN

- 70

 $\triangle A$

A_{V,d}

130

Given:

vorking loads on the (Curtain Wall bracket
working deadload	F _D = 6.00 kN
working windload	F _W = 12.00 kN

The calculation example uses load and resistance factor design, applying partial safety factors γ_F on the load side (action).

 $\begin{array}{ll} \mbox{For deadloads:} & \gamma_{\rm F} = 1.35 \mbox{ (acc. to German regulations (1))} \\ \mbox{For windloads:} & \gamma_{\rm F} = 1.50 \mbox{ (acc. to German regulations (1))} \\ \Rightarrow \end{array}$

- <u>design</u> deadload $F_{D,d} = \gamma_F \cdot F_D = 1.35 \cdot 6.0 \text{ kN} = 8.1 \text{ kN}$

- <u>design</u> windload $F_{W,d} = \gamma_F \cdot F_W = 1.5 \cdot 12.0 \text{ kN} = 18.00 \text{ kN}$

Design forces acting on the channel:

B _{V,d}	= (8.1 · 70 + 18.0 · 30) / 130 = 8.51 ≙ N _{E,d}
B _{H,d}	= $F_{W,d}$ = 18.0 kN $\stackrel{\circ}{=} V_{yE,d}$
γ = arcta	$\ln\left(\frac{N_{E,d}}{V_{yE,d}}\right) = \arctan\left(\frac{8.51}{18.0}\right) = 25.3^{\circ} > 15^{\circ}$
$\Rightarrow N^*_{E,d}$	$(\gamma > 15^{\circ}) = \sqrt{(N_{E,d})^2 + (V_{yE,d})^2}$
N* _{E,d}	= √ (8.51)² + (18.0)² = 19.91 kN ≙ 2 × 9,96 kN

SELECTED CHANNEL:

HZA 38/23 - 3	00 - 3 anchors wit	h 2 bolts at 125mm	centre (→ p. 12)
---------------	--------------------	--------------------	-------------------------

B_{H,d}

, A B

^BV,d

SELECTED BOLTS:

2 piece	s HS 38/2	23 M12×60	gv 8.8 (→ p. 13)
V _{yR,d} =	27.0	> V _{yE,d =}	9.0	√ OK
$N_{R,d} =$	27.0	> NE,d =	4.26	✓ OK
$F_{SR,d} =$	27.0	> FSE,d =	9.96	✓ OK

D Partial safety factors γ_{F} in China may be different from the German ones

CALCULATION EXAMPLE - HOW TO SELECT THE RIGHT CHANNEL

EXAMPLE 2

Given:

working loads on the Curtain Wall bracket- working deadload $F_D = 2.00 \text{ kN}$ - working windload $F_W = 10.00 \text{ kN}$

The calculation example uses load and resistance factor design, applying partial safety factors γ_{F} on the load side (action).

 $\begin{array}{ll} \mbox{For deadloads:} & \gamma_{\rm F} = 1.35 \mbox{ (acc. to German regulations ①)} \\ \mbox{For windloads:} & \gamma_{\rm F} = 1.50 \mbox{ (acc. to German regulations ①)} \\ \Rightarrow \end{array}$

- <u>design</u> deadload $F_{D,d} = \gamma_F \cdot F_D = 1.35 \cdot 2.0 \text{ kN} = 2.7 \text{ kN}$ - <u>design</u> windload $F_{W,d} = \gamma_F \cdot F_W = 1.5 \cdot 10.0 \text{ kN} = 15.0 \text{ kN}$

Design forces acting on the channel:

 $Q_{,d} = F_{D,d} = 2.7 \text{ kN} \triangleq V_{\text{yE},d}$

 $Z_{,d} = F_{W,d} + F_{D,d} \times (100 / 35) = 15.0 + 2.7 \times (100 / 35)$ = 22.7 kN \triangleq N_{E,d}

$$N_{E,d}^* = \sqrt{(N_{E,d})^2 + (V_{yE,d})^2}$$

 $N_{E,d}^* = \sqrt{(22.7)^2 + (2.7)^2} = 22.86 \text{ kN}$ = 2 × 11.43 kN

SELECTED CHANNEL:

HGB-E 38/23 - 300 - 3 anchors with 2 bolts at 130mm centre (\rightarrow p. 14)

actual $a_r = 60 \text{ mm} (\rightarrow p. 14)$

 $\begin{array}{rcl} \Rightarrow & V_{yR,d} = & 2 \times 3.7 & > & V_{yE,d} = & 2 \times 1.35 & & \checkmark OK \\ & N_{R,d} = & 2 \times 14.0 & > & N_{E,d} = & 2 \times 11.35 & & \checkmark OK \\ & N^*R,d = & 2 \times 14.0 & > & N^*E,d = & 2 \times 11.43 & & \checkmark OK \end{array}$

SELECTED BOLTS:

2 pieces HS 38/23	M12×60 gv 8.8 (→ p. 15)	
actual c = 130	> required c ≥ 125 (\rightarrow p. 14) \checkmark OK	
$V_{yR,d} = 27.0$	> V _{yE,d} = 1.35 ✓ OK	
$N_{R,d} = 27.0$	> N _{E,d} = 11.35 √ OK	
$F_{SR,d} = 27.0$	> FSE,d = 11.43 √ OK	

Partial safety factors γ_{F} in China may be different from the German ones

HALFEN CAST-IN CHANNELS

INSTALLATION

Nail channel to formwork

Insert T-bolt into channel and rotate ninety degrees.

SPECIAL INSTALLATION ASSEMBLIES

When concrete is set, remove the formwork, then remove the filler material from the channel.

Attach component and tighten nut.

Welded Corner Assembly Factory fabricated assembly allows bolt fixings close to corner edge. Additional spacer straps may be added to ensure correct channel height.

Fabricated channel pair Factory manufactured to provide accurate channel spacing.

FOR EXTREME SITUATIONS

Notes: ② only with HSR M20 ③ only with welded I-anchor Q

FOR EXTREME SITUATIONS

HALFEN CAST-IN	CHANNE	ELS HTA	/HZA – <i>I</i>	NINIMU	M SPACING a	r, a _a ,	a _e , a _f AND d
	Minimum s	pacings and	l edge dista	nces [mm] @	D		
	For	all concrete	grades $\geq C_2$	20/25			
Halfen Channel Type	a _r	a _a	a _e	a _f	d (5)		ae
HTA 52/34	200	400	175	350	160 + nom.c		af
HTA 55/42	250	500	225	450	185 + nom.c		a _e
HZA 29/20	100	200	80	200	80 + nom.c		ar
HZA 38/23	150	300	130	250	96 + nom.c		a _a a _r
HZA 41/27	200	400	175	350	146 + nom.c		

HALFEN T-HEA	HALFEN T-HEAD BOLTS HSR, HZS – MATERIAL DESIGN RESISTANCE PER BOLT ©								
Halfen Channel Type	HTA 52/34 350 mm 3 anchors	HTA 55/42 350 mm 3 anchors	HZA 29/20 250 mm 2 anchors	HZA 38/23 300 mm 3 anchors	HZA 41/27 350 mm 3 anchors				
Halfen T-head bolt Type	HSR 50/30 M20×60 gv 8.8	HSR 50/30 M20×60 gv 8.8	HZS 29/20 M12×60 gv 8.8	HZS 38/23 M12×60 gv 8.8 (HZS 38/23 (M16×60 gv 8.8)	HZS 38/23 M16×60 gv 8.8				
	VyR,d (shear) VaRd Iong(tudinal NR,d (pull) shear)	VyR,d (shear) VaRd NR,d (pull) vshear)	VyR,d (shear) VaRd NR,d (pull) shear)	VyR,d (shear) VyR,d (shear) Iongitudinal NR,d (pull) shear)	VyR,d (shear) VaRd Iong(tudinal NR,d (pull) vshear)				
$N_{R,d} = V_{yR,d} = F_{SR,d}$ [kN]	78	78	27	27 (50)	50				
V _{xR,d} [kN]	10	10	27	27 (50)	50				
ΔN _{R,d} [kN]	10	10	2	2 (4)	4				
Required tightening torque [Nm]	400	400	80	80 (120)	120				

Structural analysis	FR,d Material <u>resistance</u>		FE,d Factored design <u>I</u>	load
Shear Material Resistance	V _{yR,d}	\geq	V _{yE,d}	
Tension Material Resistance	N _{R,d}	\geq	N _E ,d	
Longitudinal Shear Material Resistance	V _{xR,d}	\geq	V _{xE,d}	
Resultant Material Resistance	F _{SR,d}	\geq	F _{SE,d}	$= \sqrt{(N_{E,d})^2 + (V_{xE,d})^2 + (V_{yE,d})^2}$
Dynamic Material Resistance	$\Delta NR,d$	\geq	∆NE,d	
VyE,d VxE,d VxE,d VyE,d FSE,d	Dynamic Load			 Notes: The minimum dimensions given in the table apply to reinforced concrete. For unreinforced concrete increase dimensions by 30%. Derived from channel plus anchor plus the required concrete cover (e.g. to DIN 1045). Channel load capacity must not be exceeded! gv 4.6 = zinc plated, strength grade 4.6 gv 8.8 = zinc plated, strength grade 8.8

FOR STANDARD APPLICATIONS

FOR STANDARD APPLICATIONS

HALFEN CAST-IN	CHANNE	LS HTA	ΉZA – Λ	AINIMU/	M SPACING a	, a _a , a	_e , a _f AND	d
Halfen Channel Type	a _r	a _a	a _e	a _f	d 3			
HTA 38/17	75	150	50	100	70 + nom.c		a	f
HTA 52/34	200	400	175	350	160 + nom.c		a _e	
HTA 55/42	250	500	225	450	185 + nom.c		ar	
HZA 29/20	100	200	80	200	80 + nom.c		a _a a	\sim
HZA 38/23	150	300	130	250	96 + nom.c			
HZA 41/27	200	400	175	350	146 + nom.c			

HALFEN I-HEA	HALFEN I-HEAD BOLIS HS - MATERIAL DESIGN RESISTANCE PER BOLI @							
Halfen Channel Type	HTA 38/17 250 mm 2 anchors	HTA 52/34 350 mm 3 anchors	HTA 55/42 350 mm 3 anchors	HZA 29/20 250 mm 2 anchors	HZA 38/23 300 mm 3 anchors	HZA 41/27 350 mm 3 anchors		
Halfen T-head bolt Type	HS 38/17 M12×60 gv 4.6	HS 50/30 M16×60 gv 8.8	HS 50/30 M16×60 gv 8.8	HS 29/20 M10×60 gv 8.8	HS 38/23 M12×60 gv 8.8 (HS 38/23 (M16×60 gv 4.6)	HS 38/23 M16×60 gv 8.8		
	VyR,d (shear) NR,d (pull)	V _{yR,d} (shear) N _{R,d} (pull)	VyR,d (shear) NR,d (pull)	V _{yR,d} (shear) N _{R,d} (pull)	V _{yR,d} (shear) N _{R,d} (pull)	V _{yR,d} (shear) N _{R,d} (pull)		
$N_{R,d} = V_{yR,d} = F_{SR,d}$ [kN]	13	50	50	18	27 (24)	50		
Required tightening torque [Nm]	25	200	200	48	70 (60)	200		

Structural analysis	FR,d Material <u>resistance</u>		^F E,d Factored design <u>load</u>	
Shear Material Resistance	V _{yR,d}	\geq	V _{yE,d}	
Tension Material Resistance	N _{R,d}	\geq	N _{E,d}	
Resultant Material Resistance	F _{SR,d}	\geq	F _{SE,d}	$=\sqrt{(N_{E,d})^{2} + (V_{yE,d})^{2}}$

Notes:

- $\ensuremath{\textcircled{O}}$ The minimum dimensions given in the table apply to reinforced concrete. For unreinforced concrete increase dimensions by 30%.
- ③ Derived from channel plus anchor plus the required concrete cover (e.g. to DIN 1045).
- (4) Channel load capacity must not be exceeded! gv 4.6 = zinc plated, strength grade 4.6 gv 8.8 = zinc plated, strength grade 8.8

FOR USE IN THIN CONCRETE ELEMENTS

FOR USE IN THIN CONCRETE ELEMENTS

HALFEN T-HEA	D BOLTS HS – MA	TERIAL DESIGN RE	SISTANCE PER B	OLT 2	and the second
Halfen Channel Type	HGB-E 38/17 300 mm 3 anchors	HGB-E 52/34 300 mm 3 anchors	HG B-E 29/20 300 mm 3 anchors	HGB-E 38/23 300 mm 3 anchors	HGB-E 41/27 300 mm 3 anchors
Halfen T-head bolt Type	HS 38/17 M12×60 gv 4.6	HS 50/30 M16×60 gv 8.8	HS 29/20 M10×60 gv 8.8	HS 38/23 M12×60 gv 8.8 (HS 38/23 (M16×60 gv 4.6)	HS 38/23 M16×60 gv 8.8
	VyR,d (shear) N _{R,d} (pull)	VyR,d (shear) N _{R,d} (pull)	VyR,d (shear) NR,d (pull)	VyR,d (shear) NR,d (pull)	V _{yR,d} (shear) N _{R,d} (pull)
$N_{R,d} = V_{yR,d} = F_{SR,d}$ [kN]	13	50	18	27 (24)	50
Required tightening torque [Nm]	25	60	40	40 (60)	60
Structural analysis		FR,d Material <u>resistance</u>	^F E,d Factored design <u>loa</u>	ad	
Shear Material Resistance		V _{yR,d}	$\geq V_{yE,d}$		
Tension Material Resistance		N _{R,d}	≥ N _{E,d}		
Resultant Material Resistance		FsR,d	≥ ^F SE,d	$= \sqrt{(N_{E,d})^2 + (V_{yE,d})^2}$	
VyE,d	Vye,d Fse,d		N ②	otes: Channel load capacity mus gv 4.6 = zinc plated, stre gv 8.8 = zinc plated, stre	t not be exceeded! ength grade 4.6 ength grade 8.8

HALFEN HIGH LOAD CHANNEL HCW 52/34

FOR CURTAIN WALL CONNECTIONS

PRODUCT DESCRIPTION Product Code: HCW 52/34 Material: Carbon steel, hot dip galvanised ALFEN T-head bolts grade 8.8 (to be ordered separately \rightarrow see table page 17) Bimensions in mm

CHANNEL DIMENSIONS AND POSITIONING

Halfen channel HCW 52/34 should be placed in the concrete according to the minimum edge distances and spacing dimensions shown in the drawing below. Corner conditions using Halfen channel HCW 52/34 C will require special design, please contact us for assistance.

REINFORCEMENT REQUIREMENTS

HALFEN HIGH LOAD CHANNEL HCW 52/34

FOR CURTAIN WALL CONNECTIONS

CHANNEL LOAD DATA

A series of 3 tests produced the following average ultimate loads:

F _{V ultimate}	= 142.3 kN
F _{N ultimate}	= 47.4 kN
$F_{\text{Result. ultimate}} = \sqrt{F_{\text{N}}^2 + F_{\text{V}}^2}$	= 150.0 kN

The adjacent load deformation diagram may be used to determine allowable loads based on acceptable displacement and the required safety factor according to local building codes. The diagram is based on the following:

The concrete slab is \geq 125 mm thick and reinforced according to the diagram on the previous page.

Concrete compression strength \geq C 20/25 N/mm² (cylinder/cube) with normal weight aggregate.

Load is equally distributed to the channel by two Halfen T-bolts (ordered separately) spaced at \geq 150 mm centers. See below for sizes and load capacities.

An example of a typical calculation method is shown below. The factors used in the calculation example are for illustration only. Actual factors used on a project basis must be checked according to local or national building regulations. Also the calculations make no allowance for load magnification due to load eccentricities. These must be included according to the project design of the connection. Contact us for guidance if required.

Calculation Example: Assumed safety factor 3 applied to the ultimate test load.

Ultimate test load:	F _{Result. ultimate} =		150.0 kN
\Rightarrow	F _{V ultimate}	=	142.3 kN
\Rightarrow	F _{N ultimate}	=	47.4 kN

Required working loads: $F_{V \text{ work.}} = 35 \text{ kN}$, $F_{N \text{ work.}} = 10 \text{ kN}$

Allowable load at 3:1 safety factor:

	F _{Result. allow.}	=	50.0 kN
\Rightarrow	F _{V allow.}	=	47.4 kM
\Rightarrow	F _{N allow} .	=	15.8 kN

Checking $F_{V\ work.}$ = 35 kN < 47.4 kN $\ \rightarrow$ so OK

Checking $F_{N \text{ work.}} = 10 \text{ kN} < 15.8 \text{ kN} \rightarrow \text{so OK}$

Checking $F_{\text{Result. work.}} = \sqrt{10^2 + 35^2} = 36.4 \text{ kN} < 50 \text{ kN} \rightarrow \text{so OK}$

Displacement at working load < 1mm (see diagram).

Actual safety factor to ultimate test load: $\gamma_1 = \frac{150}{36.4} = 4.12$

FASTENER INFORMATION

Halfen 8.8 grade T-bolts type HS 50/30, M16 and M20 are recommended for use with Halfen channel type HCW 52/34 according to the load performance required.

The loads $F_{S Allow}$. shown in the table below are per bolt and based on applied safety factors of approximately 2.5:1,

Type selection Halfen 8.8 grade T-bolts HS 50/30

The load deformation diagram may also be used as a basis for calculations according to load resistance design methods.

Partial safety factors should be incorporated according to local or national design norms.

other factors may be applied according to appropriate regulations and project requirements.

Please note, that fastener performance may be limited by channel capacity. The sizes shown are produced with a special coating equivalent to hot dip galvanising in salt spray tests. T-bolts in other sizes and materials are available if required, please contact us for details.

Thread Size	Material Grade DIN	L Available Lengths [mm]	F _{s Allow.} bolt load (pull, angled pull and shear) [kN]	Allowable Bending Moment [Nm]	Recommen- ded initial torque [Nm]	If slotted holes are used in the bracket to achieve tolerance transverse to the channel, the capacity of the T-bolts
M 16	8.8	40, 60, 80, 100	36.1	111	200	should be checked according to the
M 20	8.8	45, 60, 80, 100	56.4	216	400	allowable bending moment.

CURTAIN WALL FIXING WITHOUT HALFEN CHANNELS: THE DISADVANTAGES

Welding is slow, is a fire risk, and needs to be closely checked for quality.

WELDING

- Risk of sparks starting fires and damaging glass & aluminium facade = high risk & high cost.
- Quality welding difficult to achieve and check on site = high risk.
- Welding needs a lot of time and should be tested to verify quality = slow installation & high risk.
- Painting required after welding to provide any corrosion protection = poor corrosion protection, more time, another operation to check, dripping paint damages facade and creates health hazard.
- Heavy electrical equipment, trailing wires, and electricity = safety hazards.
- Welds must be broken and re-welded if adjustment needed after initial installation = slow installation.
- Embedded plates are designed per project and need testing to verify performance.

Weld and paint splatter can cause expensive damage to the facade.

Welded connections require painting to give minimal corrosion protection.

Welding requires difficult repositioning of heavy equipment and a costly energy supply.

CURTAIN WALL FIXING WITH HALFEN CHANNELS: THE ADVANTAGES

HALFEN CHANNEL

- Only simple tools needed for installation.
- Easy and fast to install without special training.
- Components protected from corrosion by quality galvanising and plating.
- Can be installed without power supply.
- Easily adjustable connections.
- Fully tested components with verified load capacities.

TOTAL COST COUNTS

The only tool required.